MODELING FISH LENGTH DISTRIBUTION USING A MIXTURE TECHNIQUE
نویسندگان
چکیده
منابع مشابه
Modeling menstrual cycle length using a mixture distribution.
In reproductive health studies, epidemiologists are often interested in examining the effects of covariates on menstrual cycle length which is a convenient, noninvasive measure of women's ovarian and reproductive function. Previous literature (Harlow and Zeger, 1991) suggests that the distribution of cycle length is a mixture of a major symmetric distribution and a component featuring a long ri...
متن کاملmodeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
Robust mixture of experts modeling using the skew $t$ distribution
Mixture of Experts (MoE) is a popular framework in the fields of statistics and machine learning for modeling heterogeneity in data for regression, classification and clustering. MoE for continuous data are usually based on the normal distribution. However, it is known that for data with asymmetric behavior, heavy tails and atypical observations, the use of the normal distribution is unsuitable...
متن کاملGas Distribution Modeling using Sparse Gaussian Process Mixture Models
In this paper, we consider the problem of learning a two dimensional spatial model of a gas distribution with a mobile robot. Building maps that can be used to accurately predict the gas concentration at query locations is a challenging task due to the chaotic nature of gas dispersal. We present an approach that formulates this task as a regression problem. To deal with the specific properties ...
متن کاملRobust mixture modeling using t-distribution: application to speaker ID
Robust stochastic modeling of speech is an important issue for the performance of practical applications. The Gaussian mixture model, GMM, is widely used in speaker ID, but its performance would get limited in the presence of unseen noise and distortions. Such noisy data, referred to as ”outliers” for the original distribution, can be better represented by the use of heavy-tail distributions, s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Conference on Applied Statistics in Agriculture
سال: 2010
ISSN: 2475-7772
DOI: 10.4148/2475-7772.1057